

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Compiler Design (18CS0514)

Course & Branch: B.Tech - CSE

Year & Sem: III-B.Tech & I-Sem

Regulation: R18

UNIT –I INTRODUCTION AND LEXICAL ANALYSIS

1	a	List the various phases of a compiler.	[L1][C01]	[2M]
	b	Differentiate tokens, patterns, and lexeme.	[L4][C01]	[2M]
	с	Differences between compiler and Interpreter.	[L4][C01]	[2M]
	d	Define the Role of Lexical Analyzer.	[L1][C01]	[2M]
	e	List the various error recovery strategies for a lexical analysis.	[L1][C01]	[2M]
2	Ex	plain the phases of a compiler with neat diagram?	[L2][CO1]	[10M]
3	a) Explain in detail about the role of lexical analyzer in Compiler Design. [L		[L2][C01]	[5M]
	b) Write about input buffering? [L1		[L2][CO1]	[5M]
4	Explain about Language Processor in compiler Design?[L2][CO1		[L2][C01]	[10M]
5	Discuss the following terms			
	a) Specification of Tokens		[L2][C01]	[5 M]
	b)	Recognition of Tokens	[L2][C01]	[5M]
6	a)	Explain the Structure of Compiler?	[L3][C01]	[5M]
	b)	What is the need for separating lexical analysis and syntax analysis?	[L2][C01]	[5M]
7	Ex	plain LEX Tool with a Lex Program?	[L2][C01]	[10M]
8	W	rite short notes		
	a)	pass and phases of a compiler	[L3][CO1]	[5 M]
	b)	Bootstrapping	[L3][CO1]	[5M]
9	Ho	ow to design the compiler by using the source program position:=intial+rate*60.	[L1][C01]	[10M]
10	W	rite short notes		
	a)	Application of compiler technology	[L3][CO1]	[5M]
	b)	Compiler construction Tools	[L3][CO1]	[5M]

UNIT –II SYNTAX ANALYSIS AND TOP DOWN PARSING

1	a Define LL(1)?	[L1][CO2]	[2M]
	b What is Role of Parser?	[L1][CO2]	[2M]
	c Problems in Top Down Parsing?	[L1][CO2]	[2M]
	d Define Context Free Grammar.	[L1][CO2]	[2M]
	e Define Ambiguous grammar?	[L1][CO2]	[2M]
2	a) Construct the recursive decent parser for the following grammar?	[L3][CO2]	[5M]
	$E \rightarrow E + T/T$		
	$T \rightarrow T F/F$		
	F-> (E)/id		
	b) Explain about Left factoring and Left Recursion with an examples?	[L2][CO2]	[5M]
3	Calculate FIRST and FOLLOW for the following grammar?	[L3][CO2]	[5M]
	a) E-> E+T/T		
	$T \rightarrow T F/F$		
	F-> (E)/id		
	b) S->xABC	[L3][CO2]	[5M]
	A->a bbD		
	$B - a \varepsilon$		
	$C \rightarrow b \epsilon$		
4	Consider the grammar $E \rightarrow E + T/T, T \rightarrow T^*F/F, F \rightarrow (E)$ a Construct predictive parsing	[L3][CO2]	[10M]
5	table and check given grammar is LL(1) or not?		[~]
Э	a) Eliminate left recursion for the following grammar i) $E > E + T/T$ ii) $S > A_0/b$		[5][1]
	T > T*E/E = B > Bad/c		
	$E_{->}(E)/id$ $C_{->}Cde/f$		
	b) Explain about Left factoring with simple example?	[L3][CO2]	[5M]
6	Consider the grammar	[L3][CO2]	[10M]
Ŭ	S->AB ABad	[L5][002]	
	A->d		
	E ->b		
	D->b ɛ		
	B->c		
	Construct the predictive parse table and check whether the given grammar is LL(1) or		
	not.		
7	Consider the grammar $\mathbf{E} \mathbf{O} \mathbf{T} \mathbf{E}^1$	[L3][CO2]	[10M]
	$E^{I} \odot + TE^{I} - TE^{I} $		
	$T^{T} \mathbf{O} * FT^{T} / FT^{T} $		
	$G' \bigtriangledown \land F'$		
	$a_{\rm J} \checkmark ({\rm E})/$		
	IU Calculate FIPST and FOLLOW for the above grammer		
	Calculate I I (1) Table for the above grammar		
8	a) Write about left most and right most derivations?	[L3][CO2]	[5M]
	b) How to eliminate ambiguity for the given Ambiguous Grammar	[L1][CO2]	[5M]
9	Explain Error recovery in predictive parsing with an Example.	[L1][CO2]	[10M]
10	(a)Explain parse trees?	[L2][CO2]	[5M]
	(b)Describe about ambiguity?	[L1][CO2]	[5M]
L		L][- ~]	r1

UNIT –III BOTTOM UP PARSING AND SEMANTIC ANALYSIS

1	a Define a syntax-directed translation.	[L1][CO3]	[2M]
	b Differences between SLR,CLR, LALR parsers?	[L2][CO3]	[2M]
	c Define Handle pruning?	[L1][CO3]	[2M]
	d What is mean by shift reduce parsing?	[L1][CO3]	[2M]
	e What is bottom up parsing?	[L1][CO3]	[2M]
2	(a) Write about handle pruning?	[L3][CO3]	[5M]
	(b) Write about SLR parsing?	[L3][CO3]	[5M]
3	Construct CLR Parsing table for the given grammar	[L3][CO3]	[10M]
	S->CC		
_	C->aC/d		
4	Perform Shift Reduce Parsing for the input string using the grammar.	[L2][CO3]	[10M]
	$S \rightarrow (L) a$		
	$L \rightarrow L, S S$		
	a)(a,(a,a))		
	b)(a,a)		
5	Explain syntax directed definition with simple examples?	[L2][CO3]	[10M]
6	Describe the evaluation order of SDT with an example.	[L2][CO3]	[10M]
7	Discuss Type Checking with suitable examples?	[L2][CO3]	[10M]
8	Explain the Translation scheme of SDD.	[L2][CO3]	[10M]
9	Define augmented grammar? Construct the LR(0) items for the following Grammar	:? [L1][CO3]	[10M]
	S->L=R		
	S->R		
	L->*R		
	L->id		
	R->L		
10	Write about YACC tool?	[L3][CO3]	[10M]

UNIT –IV RUN TIME ENVIRONMENT AND INTERMEDIATE CODE GENERATION

1	a	Define Activation Record.	[L1][CO4]	[2M]
	b	Write properties of memory management	[L3][CO4]	[2M]
	c	Describe scope and life time of variable.	[L2][CO4]	[2M]
	d	Define symbol table.	[L1][CO4]	[2M]
	e	Define rules for type checking.	[L1][CO4]	[2M]
2	Dr	raw the format of Activation Record in stack allocation and explain each field in it.	[L4][CO4]	[10M]
3	(a)) Discuss about symbol table entries?	[L2][CO4]	[5M]
	(b)Write about operations on symbol table?		[L3][CO4]	[5M]
4	De	escribe the Storage Organization with simple examples.	[L2][CO4]	[10M]
5	Define Symbol table. Explain different types of Data structure for symbol table		[L1][CO4]	[10M]
6	W	rite about Different types of Intermediate code with an Example.	[L3][CO4]	[10M]
7	Explain Representation of Three Address Codes with suitable Examples.[L1][CO4]			[10M]
8	Di	scuss Storage allocation strategies with suitable examples?	[L2][CO4]	[10M]
9	W	rite about heap management mechanism.	[L3][CO4]	[10M]
10	De	escribe about Control Flow Statements.	[L2][CO4]	[10M]

UNIT –V CODE OPTIMIZATION AND CODE GENERATION

			-	
1	a	What is the Role of peephole optimization in compilation process	[L1][CO5]	[2M]
	b	List the Issues in the design of a code generator. (any 4)	[L1][CO5]	[2M]
	c	Give the different forms in target program	[L2][CO5]	[2M]
	d	Give the applications of DAG.	[L2][CO5]	[2M]
	e	Define Dead-code elimination with example.	[L1][CO5]	[2M]
2	W	rite about all issues in code generation. Describe it.	[L3][CO5]	[10M]
3	Explain the target machine architecture?[L2][CO5]		[L2][CO5]	[10M]
4	Describe about optimization techniques on Basic Blocks with simple examples? [L2][CO5]			[10M]
5	(a) Discuss the various strategies in register allocation.		[L2][CO5]	[5M]
	(b))Write about loop optimization techniques?	[L3][CO5]	[5M]
6	Ex	xplain the peephole optimization Technique?	[L2][CO5]	[10M]
7	(a))Construct the DAG for following statement. a+b*c+d+b*c	[L3][CO5]	[5M]
	(b))Discuss function preserving transformations?	[L2][CO5]	[5M]
8	Co	onstruct the DAG for the following basic blocks	[L3][CO5]	[10M]
		1. t1:=4*i		
		2. $t2:=a[t1]$		
	3. t3:=4*i			
		4. t4:=b[t3]		
		5. $t5:=t2*t4$		
		6. t6:= prod+t5		
		7. prod:=t6		
		8. t7:=i+1		
		9. i:=t7		
		10. if i<=20 goto 1		
9	De	escribe about global data flow analysis?	[L2][CO5]	[10M]
10	W	rite short notes on		
	i)	Simple code generator	[L3][CO5]	[5M]
	ii)	Register allocation and assignment	[L3][CO5]	[5M]

Prepared by: N.SIVA Assistant Professor/CSE